我国首颗碳卫星发射成功,碳卫星是怎样

碳卫星很小,但它却是我国迄今为止观测模式最复杂的民用卫星,它通过多种观测模式的组合,让碳排放无处遁形。

12月22日凌晨3时22分,我国首颗全球二氧化碳监测科学实验卫星发射升空。它成为巡游在地球上空700公里的第三位全球二氧化碳“体检师”。碳卫星将在宇宙中不断变换观测模式,完成对全球二氧化碳的监测,并借助模式同化和反演技术最终形成全球碳排放情况的“体检报告”。

碳卫星工程总体副总指挥龚建村表示,要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率二氧化碳探测仪。别小看这个二氧化碳探测仪,它可是监测碳排放的主力,采用大面积衍射光栅对吸收光谱进行细分,最高分辨率达0.04nm,如此高的分辨率在国内光谱仪器上尚属首次。

“小卫星肩负大使命。”国家遥感中心总工程师李加洪说。监测全球二氧化碳分布情况,这是中国应对全球气候变化采取的积极行动,也体现了我国的“大国担当”。而且,知己知彼,才能在全球气候谈判中掌握主动权,发出“中国声音”。

科学家将这项操作类比检查人的指纹,普通仪器只看得到纹理,而二氧化碳探测仪可以把指纹放大100倍,精细地测量每条指纹的宽度和深度。

二氧化碳在大气中的浓度本就非常低。碳卫星总设计师尹增山介绍,从2011年到2016年年底,经过近6年研制,我国碳卫星探测精度达到了优于4ppm。也就是说,当大气中二氧化碳含量变化超过百万分之四时,碳载荷就会发现。

要实现这些核心指标可不是一件容易的事情。科学家们既需要对观测和定标进行巧妙的设计,还需要能做出极高的衍射效率和面型精度大面积全息光栅。据中科院长春光机所研究员郑玉权介绍,为突破探测仪上的关键技术,科研人员从最基础的、制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难点,最终在SiC基底上制造出高精度衍射光栅,并在航空校飞试验中进行了验证。

如何发现?实际上,碳卫星对二氧化碳浓度采用的是“间接测量”法。大气在太阳光照射下,二氧化碳分子会呈现光谱吸收特性,碳卫星通过精细测量其光谱吸收线,可以反演出大气二氧化碳浓度。

二氧化碳探测仪与其他很多星载光学载荷不同,为提高两个红外通道的信噪比、保证光谱探测精度,其在轨工作时要保持在-5℃的温度水平。就是这一简单的条件变化,让科研人员付出巨大努力。在载荷初样、正样研制最紧张的阶段,研究人员连续数月在低温室里工作,经常是户外30℃以上的高温,而在低温室内,却要穿着厚厚的羽绒服、冻着手坚持装调。

但这根线非常窄。要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率二氧化碳探测仪。二氧化碳探测仪核心的技术指标和难点就是要同时实现高光谱分辨率和高辐射分辨率,这就如同检查人的指纹,普通仪器只看得到纹理,而二氧化碳探测仪可以把指纹放大一百倍,精细测量每条指纹的宽度和深度。

好容易练就了观测技能,碳卫星还面临着定标难题。二氧化碳探测仪定标系统负责人蔺超介绍,定标技术是确保光谱仪器最终实现精度的关键技术,为保证光谱数据的精准,必须在实验室和在轨工作时,对仪器的光谱性能和辐射性能进行精准标定。科研人员不但为二氧化碳探测仪量身特制了真空定标系统,还利用可调谐激光器和波长及搭建自动化定标系统,大幅提高了实验室定标的效率,使仪器的定标周期较美国的碳卫星OCO-2大幅缩短。

“要达到这么精细的分辨率,必须要有大面积光栅。”中科院长春光机所研究员郑玉权告诉科技日报记者,为突破这项关键技术,科研人员从最基础的制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难关,最终在碳化硅基底上制造出高精度衍射光栅,并在航空校飞试验中进行了验证。

为让二氧化碳浓度探测更加精准,科研人员还给碳卫星装上了另一台载荷——多谱段云与气溶胶探测仪可以测量云、大气颗粒物等辅助信息,为精确反演CO2浓度剔除干扰因素。

碳卫星探测仪上的大面积衍射光栅,能够探测2.06微米、1.6微米、0.76微米三个大气吸收光谱通道。“光谱测量的精度要求极高。”郑玉权解释说,在人眼最敏感的黄、绿波段,人眼对“色彩”分辨率极限也只有1—2纳米,而二氧化碳探测仪光谱分辨率最高可达0.044纳米。达到这样的分辨率,在国内光谱仪器的研制上尚属首次。

当然,云与气溶胶探测仪作用还不仅于此。据科技部国家遥感中心总工程师李加洪介绍,它还能够获取全球尺度的气溶胶数据,这不仅可以帮助气象学家提高天气预报的准确性,还可以为研究PM2.5等大气污染成因提供重要数据支撑。

说起研制过程,郑玉权感慨颇多。6年的载荷研制,是预研攻关和工程实施的结合。他们从无到有,实现技术突破;又迎头赶上,比肩国际先进水平。“反正,遇到问题的彷徨、解决问题的艰辛和最终找到答案的欢乐,我们全尝遍了。”

此外,在科技部、中国科学院的共同组织下,碳卫星按照航天工程模式,组成了卫星、运载、发射场、测控、应用五大系统。

碳卫星上的“配角”——云与气溶胶探测仪也不可小觑。气溶胶,通俗点说,就是大气中的尘埃。多谱段云与气溶胶探测仪载荷负责人、长春光机所空间三部副主任颜昌翔研究员说,大气气溶胶是大气辐射平衡和气候变化研究中不确定性的一个关键因素,它对全球气候的影响主要表现在其对云层的影响上。大气中存在薄云或气溶胶时,由于大气粒子的散射作用,将改变太阳辐射的光学厚度和二氧化碳总的柱吸收作用,使得反演精度大大降低;此外较厚的云层还降低了二氧化碳探测数据的有效性。因此,该探测仪可以帮忙排除探测时云和气溶胶的影响,提升二氧化碳探测数据的可靠性。碳卫星地面应用系统总设计师杨忠东表示,从设计能力上来讲,这款探测仪可以为研究雾霾提供重要数据支撑。

碳卫星发射运行后,科学数据将依托风云系列地面接收站资源完成数据下传。这些数据并不是直接可用的二氧化碳浓度分布,需要经过气象学家进行高精度的全球二氧化碳分布反演计算,才能最终成为全球二氧化碳观测数据产品并共享发布。

“碳卫星本身就肩负着‘创新’使命。”李加洪说。作为一颗科学实验卫星,碳卫星身上,至少有四项大胆的技术创新——大面积光栅、多模式定标、敏捷姿态调控以及复杂的反演验证系统。“我们碳卫星的整体水平,比日本的还要高。虽是‘后发’,但我们已经实现了‘并跑’。”

“相比以往气象卫星涉及的反演问题,碳卫星所涉及的是可见光和近红外谱段的反演问题,机理不同,难度加大。这需要考虑云与气溶胶、气压、温度、反照率等多因素的影响,重新设计全新的反演验证系统。”碳卫星首席应用科学家、国家卫星气象中心总工卢乃锰说。

技术上的卓越,并非这颗碳卫星的唯一追求。在大约半年的在轨测试之后,碳卫星将正式开始两年半的工作——让二氧化碳浓度数据“到碗里来”。“我们将按照应用需求,对后期数据进行加工、处理、共享和服务。”李加洪透露,科技部联合中国科学院和中国气象局已经制定了碳卫星数据管理办法。碳卫星数据将加载到国家综合地球观测数据共享平台,向国内各类用户提供数据共享服务。在国际合作方面,这些数据也会向地球观测组织共享,这也是中国对GEO的实质贡献。

碳卫星地面应用系统总设计师杨忠东告诉记者,“二氧化碳气体绝对含量少,要在大的噪音中找到如此小的量,非常难。为此,国内优势单位集中起来联合攻关,啃下了这块硬骨头,填补了国内技术空白。我们以物理模型为基础对大气化学成分二氧化碳的反演,进入了一个新领域”。

“一颗卫星远远不够。”不过,让杨忠东欣慰的是,六年来,他们不仅收获了这颗卫星,还了解和掌握了二氧化碳高精度遥感监测仪器的制备过程。“要满足中国社会经济的发展需求,我们还要更多碳卫星。”第一颗有了,后续的,也就不再遥远。

碳卫星肩负着巨大的使命进入太空探索,除了进行相关科学试验,更好地掌握二氧化碳的全球分布规律、机理,还有巨大的应用价值。“后期卫星传送的信息进行处理、加工、分享、服务时都会按照应用需求,与其他国家共享,同时有效指导我国的节能减排。”李加洪说。

(原载于《科技日报》 2016-12-23 01版)

(原载于《经济日报》 2016-12-23 15版)

本文由皇家赌场网址hj9292发布于皇家赌场官网,转载请注明出处:我国首颗碳卫星发射成功,碳卫星是怎样

您可能还会对下面的文章感兴趣: